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LIFT DEVELOPED ON UNRESTRAINED RECTANGULAR WINGS ENTERING GUSTS AT SUBSONIC 
AND SUPERSONIC SPEEDS 1 

By HARVARD LOMAX 

ANALYSIS 
THE EQUATION OF MOTION 

If induced pitching moments are neglected, the motion of 
a rigid wing disturbed from its equilibrium position by 
arbitrary external lifting forces is governed by Newton’s 
second law. Thus, if w is the vertical velocity of the wing 
and m its mass, we can write 

SUMMARY 

The object of this report is to prowide an estimate, based on 
theoretical calculations, of the forces induced on a wing that is 

JIying at a constant forward speed and suddenly enters a ver- 
tical gust. The calculations illustrate the e$ects of Mach 
,number (from 0 to 2) and aspect ratio (2 to a), and solutions 
are given by means of which the response to gusts hawing ar- 
bittmry distributions of velocity can be calculated. The efects of pitching nnd wing bending are neglected and only wings of 
rectangular plan form are considered. Specijic results are 
presented for shaq-edged and triangular gusts and various 
wing-air density ratios. 

INTRODUCTION 

where the forces to be summed are the aerodynamic ones due 
to the gust velocity and the motion of the wing from its 
position of equilibrium. 

Studies of the gust-response problem for restrained wings 
(wings of infinite mass) entering sharp-edged gusts at supcr- 
sonic speeds are already well advanced. Miles, Strang, 
Biot, and Heaslet and Lomax (rcfs. 1, 2, 3, and 4) presented 
solutions to such problems for two-dimensional wings; 
,\lilrs and Goodman (refs. 5 and 6) presented solutions foi 
rectangular wings having tip Mach cones that do not intersect 
the opposite edge. Miles and Strang (refs. 7 and 8) gave 
results for a triangular wing with supersonic edges. Thco- 
retical studies restricted to incompressible flow fields contain 
t,he classical solutions due to Wagner (ref. 9), Kussncr (ref. 
lo), and von Karmbn and Sears (ref. 1 I), the former con- 
taining the solution for the indicial lift on a two-dimensional 
sinking wing and the latter two containing the solution foi 
the lift on a restrained two-dimensional wing entering a 
sharp-edged gust. The extension of these studies to include 
the gust response for wings of finite aspect ratio has been 
carried out by Jones (ref. 12). Later, further extensions to 
include the effects of gust shape as well as aspect ratio have 
been made by Zbrozek (ref. 13) and Bisplinghoff, Isakson, 
and O’Brien (ref. 14). 

First, consider the force that results from a small vertical 
mot,ion of the wing. Suppose the wing has been flying in 
steady level flight at a constant speed U, up to a time t’=O. 
Fix an zyz coordinate system in space (z positive upward) 
such that at t' =0 the y axis lies along, and the origin on, the 
wing leading edge and, further, such that the wing is moving 
in the negative 5 direction. For t'>O the wing moves 
away from these coordinates, continuing forward at the 
constant speed U, along the negative z axis, and now also 
moving downward at a constant rate -w= U,OZ. ,The 
transient lifting force on the wing induced by such a maneuver 
shall be referred to as the indicial lift (positive upward) and 
clcsignatecl in coefficient form by the symbols cz, or CLm for 
scct,ion or total lift values, respectively. 

Given the indicial lift coefficient, one can show by using 
the prinicples of superposition that the lift due to an arbitrary 
variation of angle of attack caused by the vertical velocity 
of the wing can be determined from the relation 

qS d t’ 
w’)=--~ o s 

CLa (t’-tl’) w (tl’) dtl’ _ (24 

The purpose of the present report is twofold: first, to 
present solutions for a two-dimensional restrained wing 
entering a sharp-edged gust at sonic and subsonic Mach 
numbers (specifically, Mach numbers equal to 1.0, 0.8, and 
0.5); and second, to use these results together with those 
mentioned above to estimate the effect of wing aspect ratio 
and airplane mass on the lift response for airplanes flying at 
various speeds through the Mach number range from 0 to 2 
and penetrating both triangular and sharp-edged gusts. 

A list of symbols is given in the appendix. 
1 Supersedes NACA TN 2925, “ Lift Developed on Unrestrained Rectsngulor Wings Entering Gusts at Subsonic and Supersonic Speeds” by Harvard Lomas, 1953. 

Next, consider the force that is induced on a wing pene- 
trating a sharp-edged gust having a uniform upward velocity 
w,,. If the wing is restrained so that it can move neither 
upward nor downward (corresponding in flight to the limiting 
case of infinite wing mass), the section or total lift coefficients 
induced by a unit value of wO/UO will be designated- c,~ or 
C,*, respectively. Figure 1 illustrates the differences be- 
tween the boundary conditions for, and the initial variations 
of cza and cl0 for a two-dimensional wing traveling at a 
subsonic speed. 
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Set tion 
t$lgng- 

trace 

FIGURE l.-Boundary conditions and initial variations of cl, and cl=. 

Given a value of CLO, one obtains the lift on a restrained 
wing flying into a gust having an arbitrary vertical velocity 
distribution, w,(t’), by the relation 

qs d t’ L (1’)=gy 27 o S CL, (t’- 4’) w, (b’) dtl’ GW 
Substituting equations (2a) and (2b) into equation (I), 

one finds the expression for the vertical motion of an unre- 
strained wing flying into a gust; thus, 

dw PS d mdt’=-cdt’ o S t’ CL, (t’--tl’) w (b’) at,‘+ 
qs d -7 Uo dt S o t’ CLJt’-6’) w,(tl’) dt,’ (3a) 

Since w,(&‘) is assumed to be given, equation (3a) is an 
integral equation-in terms of w(C)-of the second kind 
with a variable upper limit. It is convenient first to study 
equation (3a) when the gust is a step function (sharp-edged 
gust). For this case wa(tl’) becomes a constant wo, say, and 
equation (3a) reduces to 

dw $3 d 
mdt’=-nx o S t’ CL, (t’- tl’) w (tl’) dh’+ !l!!+!! CLg(t’) (3b) u 

0 

The solution to equation (3b) can be used to find the 
induced force on an unrestrained wing entering a gust of 
arbitrary structure. Methods for solving the integral 
equation and applying its solution will be developed in the 
subsequent sections. 

INDICIAL LIFT ON A SINKING WING 

The analysis involved in calculating the indicial lift force 
on the wing is based on the assumptions that underlie linear- 

ized, thin-airfoil wing theory in general. Mathematically, 
these assumptions imply that the governing partial differ- 
ential equation of the flow field is the three-dimensional wave 
equation. In terms of the velocity potential Q and for an 
axial system fixed relative to the still air at infinity, the wave 
equation can be written 

cPzz+R/v+G%=(Ptt (4) 

where t is the product of the speed of sound a, and the time t’. 
For a wing moving in the z= 0 plane, the boundary conditions 
are that cp is continuous everywhere except across the wing 
and its vortex wake, (pa),=0 is a constant over the region 
bounded by the wing plan form at any given time, and all 
velocities vanish outside the starting wave envelope. 

All values of CLU and cZu used herein have been presented 
in previously published reports. The indicial lift on a 
sinking rectangular wing traveling at supersonic speeds has 
been presented by Miles (ref. 5). As the aspect ratio tends 
to infinity, this solution approaches that for the two-dimen- 
sional case given in references 1, 2, 3, and 4. At sonic and 
subsonic speeds, results for a two-dimensional wing are 
available for Mach numbers equal to 1.0, 0.8, and 0.5 (ref. 15) 
and for the incompressible case (ref. 16). Finally, the 
indicial lift on sinking wings of finite aspect ratio in incom- 
pressible flow is presented in reference 12. Curves showing 
the effect of Mach number on the two-dimensional values 
are presented in figure 2 (a), and the effect of aspect ratio at 
supersonic speeds is indicated in figure 2 (b). Tabular 
values for the two-dimensional wing flying at Mach numbers 
equal to 0.5 and 0.8 are given in tables I and II, respectively. 

14 

12 

IO 

e 
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4 

z 4 b tl 
Chord lengths traveled, U, l;/c 

(a) Two-dimensional wing for several Mach numbers. 
FIGURE 2.-Variation of indicial lift response with chord lengths 

traveled. 
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(II) Rectangular wings of aspect ratios 2, 5, and =. 
FIGURE 2.-Concluded. 

RESPONSE OF A RESTRAINED WING TO A SHARP-EDGED GUST 

Load distribution.-‘I’hc lift induced on a restrained wing 
penetrating a sharp-edged gust, can also bc detcrmincd by 
solving equation (4) subject to the proper boundary condi- 
tions2 For a wing moving in the z=O plane, these condi- 
tions arc similar to those given for the indicial lift’ on a sinking 
wing in that all velocities vanish outside the starting wave 
envelope and cp is continuous everywhere except across the 
wing and its vortex wake, but differ from the indicial case 
in that (c,Q)~=,, is a constant only over the port.ion of the 
wing plan form that has penetrated the gust, being zero 
over the remaining portion (see fig. I). This problem has 
been solved for a rectangular wing traveling at supersonic 
speeds by Miles (ref. 5) and, again, as the aspect ratio tends 
to infinity, this solution approaches that for the two-dimen- 
sional case given in references 1, 2, 3, and 4. Two-dimen- 
sional wings flying at he speed of sound and two- and three- 
dimensional wings flying in an incompressible medium have 
also been considered (refs. 4, 16, and 12, respectively). 

The problem of finding the two-dimensional gust response 
at subsonic speeds can be solved by the same method that 
was used in reference 15 to find the two-dimensional subsonic 
indicial response. For these cases equation (4) reduces to 

2 It is interesting to note that the gust lift function cl, can he related to the indicial reslxmse 
following R  step vari&ion of angle of attack under quite general conditions by the reciprocal 
theorems given in reference 17. 

and the boundary conditions for a section in the xt plane are 
indicated in figure 3. 

Trace of foremost 
sound wave---, 

‘\ 

Loodlng falls to zero 
at troiling edge---, 

Vortex wake, A+ 
Independent of t 
and given by value 
al trolling edge----//’ 

FIGURE 3.-Boundary values for ctg. 

The solutions obtained for the load coefficient over regions 
1 and 2 shown in figure 3 can be written (details of the 
analysis are omitted): 
For region 1 

For region 2 

AP 8 M,(t-x) 2 __~ ~. 
G=dl +Mo) 

x+M”t +;4M(t-rw-.?:--M,o 

II &2 2K -Em9) +KE’(IC/) --KF’(d 
-x2)(1-M,2) J(r+M,t)(c-x-MM,t) II (6b) 

The symbols E, K, E’(q), and F’(q) are elliptic integrals 
defined in the appendix, their modulus k being given by 

k- 
J 

(t+x)(1+Mo)---c 
ct+ x)(1 + n/r,> 

(7) 

and their argument $ by 

$=arc sin 
J 

x+Md ~ 03) c 

Equations (6a) and (6b) give the loading over the complete 
wing section for values of t less than or equal to .%/(I-MO’). 
Since Mot/c equals U&‘/c, the number of chord lengths trav- 
eled, these equations represent the exact linearized solution 
for the section load distribution during the time required 
for the wing to travel .ZM,,/(l-Mo2) chord lengths after reach- 
ing the gust front. Hence, for a Mach number equal to 0.8, 
equations (6) establish the gust response during the first 4.44 
chord lengths of travel after the gust penetration. Figure 4 
shows the variation of gust loading Ap/qg throughout this 
interval and also, for comparative purposes, the indicial load 
-variation Ap/qa for the first four chord lengths of travel. 

I -- 
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0 
Percent chord 

100 / 

FIGURE 4.--G&, and indicial loading on two-dimensional wing. 
il10=0.8. 

The dashed curves in figure 4 represent the final steady-state 
load distribution adjusted so as to give the same total lift as 
the exact solutions for the gust and indicial cases at U,$‘/c 
equal to 4.44 and 4, respectively. Thus, to the clegree of 
accuracy indicated in figure 4, the gust and indicial loadings 
at M,,=O.S can be approximated for larger values of lJot’/c 
by t,he expressions 

and 

The variation of clg and cl, for values of UOt’/c greater than 
4 will be discussed presently. 

For a Mach number equal to 0.5, equations (6) are suffi- 
cient to establish the gust response for only the first 1.33 
chord lengths traveled. Further calculat,ions were carried 
out and the exact loading was establishecl for both the gust 
and indicial cases for values of U,,t’/c less than or equal to 
2.33. These calculations were for the most part numerical 
and no simple closed expressions such as those presented in 
equations (6) were obtained. Figure 5 contains the results. 
Again, the dashed curves represent the final adjusted steady- 

I I I I I I I 
IC 

Percent chord 

state load distribution indicating that the gust and indicia 
loaclings for M,,=O.5 can also be approsimatecl for larger 
values of U,,t’/c by the equations (9). 

Section lift,-When integrated across the chorcl at a fixed 
time, the loadings shown in figures 4 and 5 give the variat,ion 
of the lifting force on the wing section during the early portion 
of the response. In the interval 05 Uot’/c_<il&/(l+Mo) 
equation (6a) integrates to give 

(10) 

In the interval MO/( 1 +nlO) _< Uot’/c < 2Mo/( 1 -Mo2) the cs- 
prcssion for the loading is too complicated to integrate 
analyticahy ancl the section lift was calculated by numerical 
methods. The results, together with those for cr, (taken 
from ref. 15), are given in figure 6. Since, as time goes on, 
clg must approach cIa, the curve for the gust response was 
simply faired into the curve for the indicial response in the 
manner shown by the dashecl lines. Finally, for values of 
U&‘/c greater than 10, the following equations, taken from 
reference I, can be used: 
For i&=0.5, 
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6 

Oi I( 
Percent chord Percent chord 

FI~UHE 5.-Gust atld indicial loading on two-dimensional wing. .1/,=0.5. 

MO= 0.8-J : \ 

FIGURE 6.-Initial variations of cl= and ~1~. 

For &&=0.8, 

1.736 70.83 
11+1.25(U~t’/c)-[11+1.25(Uot’/c)]~ 

(lib) 

14 

Asymptotic 
I values 

12 
I I I I I I I 00 

0 2 4 6 8 
Chard lengths traveled, qtyc 

(a) Two-dimensional wing for several Mach numbers. 
FI~RE 7.-Response of restrained wing to unit sharp-edged gust. 



6 
, 

REPORT 1162~-NATIONAL ADVISORY COMMITTEE FOR AERONAUTIC@ 

I 
3 4 I 
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(b) Rectangular wings of aspect ratios 2, 5, and m. 
FIGURE 7.-Concluded. 

The final curves (determined from the previous analysis 
and aforementioned references) for clg, the section lift coeffi- 
cient developed on a restrained wing entering a sharp-edged 
gust, are shown in figure i’(a) for Mach numbers equal to 
0, 0.5, 0.8, 1.0, 1.2, 1.41, and 2.0. Tabular values are given 

TABLE I.-VALUES OF c,, ASD c~, FOR &=0.5 

rJOf’/C 

0 
1 

12 
.3 

:5” 
.6 
.7 

:: 
1.0 
1. 1 
1.2 

:: 
1:6 
1.6 
1.7 
1.8 
1. 9 
2. 0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
5.5 
6. 0 
6.5 
7.0 
7. 5 
8.0 
9.0 

10.0 
m 

in tables I and II for Mach numbers equal to 0.5 and 0.8. 
The effect of aspect ratio at a Mach number equal to 1.41 
is shown in figure 7(b). 

TABLE II.-VALUES OF cz, AND cl, FOR M,,=O.S 

0 

:i 
.3 
.4 

.5 
.6 

:I4 

1:: 
1. 5 
2.0 

3”:: 
3.5 
4.0 
4.5 

E 

E 
9.0 

10.0 
m 

0 
.044 
.085 
.129 
.170 
,209 
.234 
,256 
,276 
.296 
,315 
.402 
,465 
,513 
.551 

:% 
.642 
,663 
.7al 
,730 
.758 
.760 
,796 

l.KIO 

RESPONSE OF AN UNRESTRAINED WING TO A SHARP-EDGED GUST 

Given the indicial lift response CLa and the response for a 
restrained wing penetrating a sharp-edged gust C+ one can 
use equation (3) to find the motion of an unrestrained wing 
entering a sharp-edged gust having a constant upward 
velocity wO. As in reference 4, the lift on the unrestrained 
wing can be related to an infinite series of integrals involving 
C &a and C+ First, set 

uot’ 7=-7 Uo4’ 71=- 
c c 

27n 
-T- (w,- a, p=poCS 

so that, by integrating equation (3) with respect to t’, one 
finds 

Then use the relation 

and iterate equation (12) using Liouville’s method of suc- 
cessive substitutions. (See ref. 18.) This yields 

Equation (13) converges uniformly 3 for all 7. By means 

that is, does not exceed 

and by the ratio test the series converges uniformly. 
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(a) Mo=O, A== 
FIGURE S.-Response of unrestrained wing to a uniform, sharp-edged 

gust. 
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(b) A&=0.5, A=m 
FIGURE 8.-Continued. 
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FIGURE 8.-Continued. 

6 I I INI I 

Al !-I! ! ! ! ! ! ! 

2 

YI 111 1111 
0 2 2hord lezgths trtveled, IO 14 16 
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FIGURE S.-Continued. 
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(e) M0=l.2, A=m 
FIGURE S.-Continued. 
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(f) A&=1.41, A= m  
FIGURE 8.-Continued. 
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FIGURIC EL-Continued. 

(j) M0=1.41, A=5 
FIGURE 8.-Continued. 
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(11) MO= 1.02, A=5 
FIGURE 8.-Continued. 
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(i) M0=1.2, A=5 
FIGURE S.-Continued. 
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of it, CL/(wO/Uo) and cl/(wO/U,,>, the total and section lift 
coefficients induced on unrestrained wings entering a sharp- 
edged gust, have been calculated and the results are shown in 
figure 8. Table III indicates the range of Mach numbers and 
aspect ratios for which calculations were made, the numbers 
in the chart referring to the individual figures in which the 
results are presented. It should be not& @at results are 

~- given fol- a Wini flying at .iii= 1 a&l ‘having a finite aspect 
ratio. Such cases can be calculated from the indicial and 
restrained gust responses presented in reference 5. These 
responses are still valid at i&=1 for values of the time 
variable up to that for which the wave envelope induced by 
one side of the wing crosses the opposite side. A wing of 
aspect ratio 5 flying at the speed of sound travels 13 chord 
lengths during t&s time interval, and this is sufficient to 
establish the significant part of the response to a sharp- 
edged gust for p _< 300. 

TABLE III.-VALUES OF MACH NUMBER AND ASPECT 
RATIO FOR WHICH CALCULATIONS WERE CARRIED OUT 

The chart also shows that the gust response for the 
unrestrained wing was calccllated at MO=0 for an infinite- 
aspect-ratio wing (for comparative purposes) but, not fol 
finite-aspect--ratio wings. The gust response on],both infinite- 
andifinite-aspect-ratio wings in incompressible flow has been 
studied cxtensivcly by means of operational methods in 
references 13, 13, and 14. Where comparisons can be made, 
the results obtained in this report using-equation (13) agree 
well wirith those given in the references mentioned. 

RESPONSE OF UNRESTRAINED WING TO ARBITRARY GUST 

The function C,/(w,/U,) presented in the previous section 
can be thought of as the inclicial gust response for lift on an 
unrestrained wing. In this sense it is apparent that the 
lift on a wing penetrating a gust in which w is a function of 
the chord lengths travelecl can be calculatecl by superposi- 
tion ancl is represented by the integral 

C,_d - S + CL(n) WC7 - d &, 
dr o wo/Uo Uo (14) 

By means of equation (14), the lift induced on a wing moving 
at the constant speed U. and entering a gust, the vertical 
velocity of which starts at zero and increases linearly with 
distance of penetration, is simply the integral of CL/(wo/Uo). 
Thus, representing the section lift coefficient developed by a, 
wing entering a gust with a unit gradient by the symbol I?,~, 
we can write 

(15) 

If the wing flies into a gust with a triangular-shaped dis- 
tribution of w, having its maximum intensity wI a clistance h 

chord lengths from the front, it follows at once that the 
resulting lift response CL/(w,/lJo) is given by 

CL 
I 
;I CLs(7b2CLQ(7.-h)]; h<T_<2h 

w,lu,= 
;t ~L,w-2CLS(7-h)+ 

1 C&-2h)]; 2h<T 

(16; 

Examples of the various gust shapes and the responses in 
lift and vertical motion of wings penetrating them are shown 
in figure 9. 

Variation of gust intensity ----- 
Path of paint on wing -.--- 
Variation of lift an wing - 

FIGURE S.-Gust shapes and m~ponses. 

MAXIMUM LIFT DUE TO GUST PENETRATION 
SHARP-EDGED GUST 

Consider the maximum increase in lift caused by the 
entry of the wing into a sharp-edged gust. This increment. 
is given for the range of Mach numbers, aspect ratios, and 
wing-air density rat,ios shown in table III by the maximum 
values of CL/ (w,/U,) and c2/(wo/Uo) on the curves shown in 
figure 8. 

First, let us consicler wings of infinite aspect ratio. For 
such wings the variation of the maximum gust-induced lift 
coefficient with Mach number is shown in figure 10, and a 
cross plot in which MO instead of p is held constant is pre- 
sented in figure 11. The values for p= 03 are the steady-state 
values given by the simple equations 

2s/di=S&7 Mo< 1 

4/d= Mo> 1 

The difference between the lift increment on a restrained 
wing and that on one with a finite value of p is seen to be 
most pronounced at the high subsonic Mach numbers. Notice, 
for example, that the percentage increase in [cJ(w~/U~)]~~~ 
found by increasing MO from 0 to 0.8 is 67 for u=oo 

..--.. 
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8 Cl I-1 %/% max 
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FIGURE lO.-Maximum increme:lt. of lift, induced on a two-dimensional wing entering a uniform sharp-edged gust. 

TABLE IV.-PERCENT INCREASE IN (cl)moz RELATIVE TO 
ITS VALUE AT M,=O. 

0 
I\ 

( i I As~oti~esi ~ :: 

100 200 300 
Wing -air density rotio,p 

0 

FIGURE Il.--Maximum gust-induced lift on two-dimensional wings. 

(Prandtl Glauert rule) but only 37 for ~=200. Table IV 
indicates the relative increase in [cJ(w~/U~)]~~~ caused by 
compressibility for three different values of the wing-air 
clensity ratio. 

\ 
\ P 

\ m  300 zoil 
MO \ 

\ __-_----- 

E 

0 0 0 

1:: 
6: 39 

-“4 
103 ii 

1.2 10 12 

Consider nest the effect of aspect ratio on the maximum 
lift increment induced on a rectangular wing penetrating a 
sharp-edged gust. When p= a this increment is again given 
by the steady-state value of t#he lift-curve slope and is 
presented for A=m, 5, and 2, in figure 12. These steady- 
state values are taken from the numerous studies made of 
lifting surfaces traveling at subsonic and supersonic speeds. 
On the supersonic side, for cases in which Ad= 2 1, the 
equation (see, e. g., ref. 19) 
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FIGURE 12.-Maximum increment of lift induced on restrained rectangular wing entering a uniform sharp-edged gust. 

applies and, for cases in which 1 >A~M02-1 20, the curves 
in reference 20 were used. On the subsonic side the portions 
of the curves in the range 0 5 Ad- 5 2 were again taken 
from reference 20. The results in references 19 and 20 are 
sufficient to cover the entire Mach number range for the 
A=2 wing. For the A=5 wing the values on the subsonic 
side outside the range 0 5 Ad- 5 2 were taken from a 
curve 4 that was compiled from a large number of solutions 
for lifting surfaces traveling at subsonic speeds. 

The values of [CL/(wO/UO)]maz for rectangular wings 
traveling at supersonic speeds, given in figure 8, and the 
incompressible-flow solutions, given in references 12, 13, 
and 14, were used to prepare the curves in figure 13. The 
dashed lines between the Mach numbers of 0 and that for 
which Ad-= 1 are interpolated, the two-dimensional 
results presented in figure 10 lending credence t,o the validity 
of the interpolation. Figure 14 presents the aspect-ratio 
effect on [CJ(w,/U,)],,, at 2Mo= 1. 

It should be noted that in the vicinity of M,,= 1, the curves 
for which A= d, p= 03 (figs. 10 and 12), and probably also 

4 The ourve mss t&en from an article prepared by Robert T. Jones and Doris Cohen for 
the forthcoming series on High-Speed Aerodynamics and Jet Propulsion, Princeton Uni- 
versity Press. 

those for which A=5, P= 0~ (figs. 12 and 13 (a)), are not 
valid rcprcsentations of the gust-induced lift on actual wings 
flying at these speeds, although they do represent solutions 
to equation (4) consistent with the boundary conditions 
previously discussed. For the two cases mentioned, the 
assumptions on which equation (4) is based are violated. 
These assumptions are more closely approached, however, 
as the wing-air density ratio and the aspect ratio decrease. 
Hence, for lower values of A and p the solutions given herein 
for wings traveling in the transonic speed range have justifi- 
cation on a physical as well as a mathematical basis. 

TRIANGULAR GUST 

The maximum increase in lift on a two-dimensional wing 
passing t#hrough a triangular gust having its maximum 
intensity 12 chord lengths from its front is shown in figure 15. 
For the lower values of p, the variation of [c~/(u)~/U~)]~~~ 
with Mach number is similar to that calculated for the 
sharp-edged gust and shown in figure 10. As p increases, 
however, a comparison of the results shown in these tivo 
figures indicates the importance of the assumed gust shape in 
estimating the maximum gust-induced lift. Table V shows 
the difference in the compressibility effect obtained for the 
sharp-edged and triangular (12:chord lengths to apex) gusts. 
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A=5 

2 

0 .2 .4 .6 .8 

Mach number, MO 
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(a) A=5 
FIGURE 13.-Hasimum increment of lift induced on a rectangular wing entering a uniform sharp-edged gust. 

TABLE V.-RATIO OF THE VALUE OF (C~),,, AT M,,=O.S .4r\‘D 
1.0 TO ITS VALUE AT Mo=O. 

iI!fOo=l.O 

Sharp Tri- 
edge lmgle 

1 

1.44 1.51 
1.59 1.58 
1.88 1. Gi 
2.03 l.iO 

m 1.85 

Figure 16 presents the aspect-ratio efl’ect on the maximum 
lift response for rectangular wings penetrating triangular- 
shaped gusts. The values at MO=0 were calculated from 
the results given in reference 12 and again the dashed lines 
represent an interpolation. 

CONCLUDING REMARKS 

Results are presented for the lift developed by a restrained 
two-dimensional wing flying at a Mach number equal to 0.5 

or 0.8 and penetrating a sharp-edged gust. Similar results 
are reviewed for Mach numbers equal to 0, 1.0, 1.2, 1.41, 
and 2. 

A method is given whereby the lift can be estimated 
(neglecting the effects of airplane pitching and wing bending) 
for unrestrained rectangular wings in the aspect-ratio range 
2to 03, flying in the Mach number range 0 to 2, and penetrat- 
ing gusts of arbitrary structure. Specific results are given 
for sharp-edged and triangular-shaped gusts. 

In general, given variations in the wing aspect ratio, the 
wing-air density ratio, and the gust shape have their masi- 
mum effect on the gust lift when the wing is flying at a 
high subsonic speed. 

AMES AERONAUTICAL LABORATORY 
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

MOFFETT FIELD, CALIF., Feb. 3, 1963. 
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FIGURE 13.-Concluded. 
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FIGURE 14.-Maximum gust-induced lift on rect.angular wings. 
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FIGURE Is.--Maximum increment of lift induced on a two-dimensional wing entering a triangular gust having its apex 12 chord lengths from the 
front. 
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-Maximum increment, of lift induced on a rectangular wing entering a triangular gust having its apex 12 chord lengths from the front FIGURE 16.- 
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APPENDIX 
LIST OF SYMBOLS 

aspect ratio 
speed of sound 
chord length 

L wing lift coefficient, - 
PS 

L 
section lift coefficient, - 

PC 
complete elliptic integral of second kind wit,11 

modulus k 
incomplete elliptic integral of second kind wkh 

modulus k’ and argument $ 
incomplete elliptic int,egral of first kind with modu- 

lus k’ and argument J/ 
wo - 
UO 

number of chord lengths from front to apes of 
triangular gust 

complete elliptic integral of first kind with modu- 
lus k 

modulus of elliptic integrals (See eq. (7).) 
Jiz 
lift on wing 
Mach number at which wing is traveling 
mass of wing 
loading coefficient, pressure on lower wing surface 

minus pressure on upper wing surface divided 
by dynamic pressure 

1 dynamic pressure, z poUo2 

wing area 
time 
ant 
horizontal velocity of wing 
vertical velocity of wing 
velocity of arbitrary gust 
velocity of uniform, sharp-edged gust, 
maximum velocity- of triangular gust 
Cartesian coordinates fised with reference to still 

air at infinity, 2 positive upward, y parallel to wing 
leading edge, negative z direction corresponding 
to direction of wing motion 

wing angle of attack 
2m wing-air density ratio, __ 

P&S 
in analysis of complete 

2m. wing, poc2 in analysis of wing section 

air density 
unt chord lengths traveled by wing, c 

perturbation velocity potential 
argument of elliptic integrals (See eq. (S).) 

Subscripts: 
9 response of restrained wing to unit, sharp-edged 

gust 
s response to gust with unit velocity gradient 
a indicial response on sinking wing 
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